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The one-dimensional expansion of a plasma slab is studied using a kinetic description of the electrons based
on an adiabatic invariant. The distribution function of the electrons is determined at any time and any position.
Solution of the Poisson equation then enables us to determine the electric potential and the ion acceleration.
Special attention is devoted to the disassembly time of the plasma slab which appears shorter than expected,
due to the distortion of the electron distribution function. The spatial structures of the ion and electron densities
and velocities are presented, together with a prediction of the maximum ion velocity. The model is compared
to particle-in-cell simulations and excellent agreement is found.
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I. INTRODUCTION

The quest for multi-MeV protons is at the forefront of the
reasearch in laser-plasma physics �1–8�. These energetic ion
beams have unique properties such as ultralow emittance and
short duration and have opened up a way to several applica-
tions �9–11� such as proton therapy �12�. Several schemes
have been proposed to generate such ions and the most fre-
quently suggested assumes that ions are emitted from the
rear surface of thin foils irradiated with short-pulse,
ultrahigh-intensity lasers ���1 ps, I�2�1018 W cm−2

�m2�. Hot electrons are accelerated by the laser pulse at the
front surface, then propagate through the target, and form on
the rear surface an electron sheath which accelerates ions
�3,4,7,8,13–15�. Controlling the ion acceleration process and
particularly the ion energy spectrum implies a good compre-
hension of the electron heating mechanism by the laser
�16–18�, the plasma expansion structure �19–24�, the influ-
ence of the initial ion density profile �25�, and the electron-
ion energy transfer �21,26–28�.

The electron cooling and the energy transfer in plasma
expansion has been the subject of numerous studies. The
energy exchange between electrons and ions in the self-
similar expansion of a semi-infinite plasma was studied in
Ref. �21�. Kinetic analytical solutions for the expansion of a
Gaussian plasma in the quasineutral limit were given in Refs.
�26,27�. More recently, Ref. �28� studied electron cooling in
the expansion of a one-dimensional finite-size plasma with a
hybrid model assuming a time-dependent Maxwell-
Boltzmann distribution. In the present paper, we propose a
method that treats the expansion of a finite plasma foil with
a nonrelativistic kinetic description of the electrons, includ-
ing the charge separation effect. The method is based on the
time scale separation between the transit time of the elec-
trons in the electric potential and the hydrodynamic time of
the plasma �29,30�. It allows us to calculate with high accu-
racy and small computational effort the evolution of the elec-
tron distribution function during the expansion. When the
initial ion density is spatially uniform within a finite size, we
observe a strong distortion of the electron distribution func-
tion, with respect to a Maxwellian distribution, during the
early stage of the plasma expansion.

The paper is organized as follows. In Sec. II we recall
briefly the adiabatic invariant theory and how this theory can

be used to calculate the energy variation of an electron in a
potential slowly varying with time. For given analytical po-
tentials, we calculate the corresponding electron energy
variation and show in particular how the electron distribution
function can be distorted from its initial shape in the self-
similar potential corresponding to the early expansion of a
plasma slab. In Sec. III we explicitly develop the analytical
and numerical algorithm used to describe the one-
dimensional expansion of a plasma slab. In particular, we
describe a numerical code where ions are treated as particles
�as in Ref. �28��, and where electrons are fully described by
a slowly time-evolving distribution function. The numerical
results of the code are shown in the last section and com-
pared with the results of particle-in-cell �PIC� simulations
and with the results of the hybrid model of Ref. �28�. We find
excellent agreement with the PIC results. We describe the
departure of the distribution function from a Maxwellian dis-
tribution and the evolution of the electron phase space. Spe-
cial attention is given to the calculation of the ion acoustic
speed in the present kinetic theory, and to its effect on the
disassembly time of the plasma slab. We show that the rar-
efaction wave which travels at the ion acoustic speed toward
the center of the foil accelerates due to the distortion of the
electron distribution function, in contrast to the prediction of
the hybrid model based on Maxwellian electron distribution
functions �28�. The spatial profiles of the ion and electron
densities and of the electrostatic field and potential are also
displayed. Finally we compared the time evolution of the
field and the velocity at the ion front to the ones we obtained
in the hybrid model of Ref. �28�.

II. ELECTRON KINETIC THEORY IN A SLOWLY
TIME-VARYING POTENTIAL

On a time scale smaller that the inverse of the collision
frequency, the one-dimensional nonrelativistic collective dy-
namic of the plasma electron population is governed by the
Vlasov equation

� fe

�t
+ v

� fe

�x
+

e

me

��

�x

� fe

�v
= 0, �1�

where fe= fe�x ,v , t� is the electron distribution function.
From kinetic theory, it is known that, if one can find some
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motion invariants, then any function of these invariants is a
solution of the Vlasov equation.

A. Adiabatic invariant

Our study deals with the expansion of a one-dimensional
finite plasma slab, where the noncollisional electron gas is
located in a self-consistent electrostatic potential well formed
with ions of mass mi and charge Ze. We assume a symmetric
expansion around the position x=0, which is the position of
the center of the slab. The potential satisfies at any time

��x = 0,t� = 0, �2�

��x → � �,t� → − � , �3�

��

�x
�x → � �,t� = 0. �4�

The second condition above ensures that there is no electron
at infinity.

The potential is assumed to be a monotonic function of
space for �x��0 and to be slowly varying with time. Hence a
time scale separation results from the condition

T
t�

= T� 1

�

��

�t
� 	 1, �5�

with

T =�me

2
� dx

�E + e�
, �6�

where T is the electron period in the well, t� is the charac-
teristic time of variation of the electric potential, and E
= 1

2mev2−e��x , t� is the total energy of an electron. The con-
dition �5� is a consequence of the smallness of the ratio
me /mi, as t� is proportional to �mi /Z.

Following our assumptions, the invariant of the motion is
known to be �29,32�

I =� p dx , �7�

where p=mev is the electron momentum and where the inte-
gral is computed along the electron trajectory, with values of
E and � independent of time. Note that the adiabatic invari-
ant I can be considered as a function of the energy and of the
time, I= I�E , t�, the time dependence being due to the time
dependence of the electric potential �.

B. Energy variation

To lowest order, the electron distribution function is a
function of only the adiabatic invariant �7�,

fe = fe�I�E,t�� . �8�

We can rewrite the Vlasov equation by noticing that the elec-
tron distribution depends only on the energy and the time.
After the corresponding change of variables, Eq. �1� reads

� fe

�t
− e

��

�t

� fe

�E
= 0. �9�

The characteristics of �9� can be determined by averaging the
energy variation rate over an electron period �29�,

	 dE
dt

 = − e	 ��

�t

 = − e

� ��

�t

dx

�E + e�

� dx

�E + e�

. �10�

One notices that the expression �10� is strictly equivalent to
the equation �dI /dt�=0. By definition, the solution of Eq.
�10� allows one to solve the kinetic equation �9�.

C. Examples with analytical potentials

1. Potential with uncoupled variables

First of all, we study the example of potentials that can be
written in the form

e��x,t� = h�t�
�x� , �11�

where h is a slowly time-varying function satisfying the adia-
batic condition �5� and 
 a monotonic function of space for
�x��0. In the case of uncoupled variables, Eq. �10� reads

	 dE
dt 
 = − e

dh

dt

� 

dx

�E + e�

� dx

�E + e�

=
1

h

dh

dt
E −

I

2T� , �12�

where the ratio I /T is a priori a function of E and t. One
remarks that a distribution function, if initially Maxwellian,
remains Maxwellian if the energy variation rate dE /dt is pro-
portional to the energy. Thus, the potentials for which the
ratio I /T is proportional to the energy conserve the Maxwell-
Boltzmann equilibrium �with a time-dependent temperature�.
A trivial example is given by the slowly time-dependent har-
monic oscillator for which the adiabatic invariant is well
known �32�, I=ET. However the harmonic oscillator poten-
tial is not the only one that satisfies the condition I /T�E. Let
us assume that a potential may be written as e��x , t�
=h�t�
�x�=−h�t�x, with �0. The invariant and the period
of an electron read

I = 4�2meEE
h
�1/

J, �13�

T = 4�me

2EE
h
�1/

J� , �14�

with 0�J=�0
1�1− tdt�1 and J� =�0

11 /�1− tdt�1. One
deduces that the ratio between the invariant and the period is
proportional to the energy,
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I

T
= 2

J

J�
E . �15�

As a result, if the initial distribution is Maxwellian, it will
remain Maxwellian for any time for such a power law po-
tential.

2. Self-similar potential

Let us now consider the self-similar potential obtained in
the quasineutral isothermal expansion of semi-infinite
plasma �19�, e�ss=−kBTe�1+x /cst�. Here x=0 corresponds
to the edge of the initial semi-infinite plama which occupies
the x�0 half space, Te is the electron temperature in the
plasma, cs= �ZkBTe /mi�1/2 is the ion acoustic velocity, and the
ions are assumed to be cold. One can compute the energy
variation of an electron during its transit in the potential,

�E = −�eme

2
�

−cst

xr ��ss

�t

dx

�E + e�ss

�
4�2

3
�Zme

mi

� E
kBTe

3kBTe

2
− E� . �16�

The above expression �16� is identical to the one obtained in
Ref. �21�. The time spent by the electron in the self-similar
potential �x�−cst� is given by

Tss = 2�me

2
�

−cst

xr dx

�E + e�ss

=
4
�2
�Zme

mi

� E
kBTe

t ,

�17�

where xr is the turning point of the electron.
For large enough values of the self-similar variable, �

=x /cst�1, the characteristic time of variation of the poten-
tial is t�= �� /�t��� t. Thus, the condition �5�, which reads
here

E 	 kBTe
mi

Zme
, �18�

is clearly satisfied.
The exact trajectories of a few electrons in the self-similar

potential have been plotted in Fig. 1. In agreement with the
expression �16�, one can see that low-energy electrons �E
�3kBTe /2� experience an energy gain whereas the high-
energy ones �E�3kBTe /2� experience an energy loss. In any
case the electrons gain energy when x�0 and lose energy
when x�0.

If we consider now the expansion of a plasma slab of
initial thickness L, with L�cst��D0, where �D0 is the De-
bye length in the unperturbed plasma, we can assume that the
expansion on both sides of the slab is initially satisfactorily
described by the self-similar solution, at least in the
quasineutral part of the expansion �24�. In this limit, the
electron period is given by

T = 2�me

2E
�L − 2cst� + 2Tss � 2�me

2E
L . �19�

One thus finds that

	 dE
dt

 �

2�E
T �

8

3

cs

kBTeL
E3kBTe

2
− E� . �20�

The calculation of the electron energy variation in the linear
self-similar potential, which is approximately valid for the
initial phase of the slab expansion, reveals that the electron
distribution function will be progressively distorted with re-
spect to a Maxwellian distribution, evolving toward a super-
Maxwellian �top-hat� distribution. �Note that this behavior is
dependent on the initial conditions of the system, and that in
the particular case of an initial Gaussian ionic density
�31,33�, the potential remains quadratic in the quasineutral
part of the expansion, and thus the distribution function stays
Maxwellian while cooling down�.

III. ELECTRON KINETIC MODEL FOR PLASMA
EXPANSION

A. Kinetic model

The electron distribution function distortion mentioned
above can only be described by a kinetic approach, which is
the subject of this section. In contrast with the hybrid model
used in Ref. �28�, where the electron distribution was as-
sumed to be Maxwellian at any time, we do not make any
prescription on the electron distribution function, except at
the initial time t=0.

Initially, the ions are at rest and fill a foil of thickness L
with an uniform density ni0. Though the model can be run
with any initial electron distribution function, in this paper
we restrict our study to the case of an initial Maxwellian
distribution, with temperature Te0, with vth0= �kBTe0 /me�1/2

the corresponding thermal velocity. We also define ne0
=Zni0.
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FIG. 1. Electron trajectories in a self-similar potential for differ-
ent initial electron energies. The electron comes from the left and
enters the potential at the position x=−cst0 at time t= t0. �a� E
=2kBTe, �E�0. �b� E=3kBTe /2, �E=0. �c� E=1.25kBTe, �E�0.
�d� E=−e�ss�0, t�=kBTe, �E�0. �e� E=kBTe /2, �E�0. The
dashed lines correspond to the potential −e�ss at the time when the
electrons turn back.
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The distribution function for the electrons is governed by
Eq. �9�. The ions are treated as particles and obey the equa-
tion of motion

dvi

dt
= −

Ze

mi

��

�x
. �21�

The electrostatic potential is determined by the Poisson
equation

�2�

�x2 =
e

�0
�ne − Zni� , �22�

where

ne�x,t� = �
−�

�

fedv , �23�

and where the ion density is determined from the position of
the ions.

The Vlasov equation �9� is solved by computing numeri-
cally the equation of the characteristics �10�. The equation of
the characteristics may be interpreted as a kinetic generali-
zation of the time evolution of the electron temperature in
the hybrid model used in Ref. �28�. In fact, the numerical
resolution of the plasma expansion is similar to the one de-
scribed in �28�, with the electronic population now described
by the distribution fe. In practice, a finite number �between
n=10 and 100� of characteristics are computed. Let v j�t� �for
j=0 to n−1� be the absolute value of the velocity of the
electron labeled j when it goes through the center of the foil
�x=0�, and f j the value of the distribution function for this
particular electron �as a property of the Vlasov equation, f j
does not vary with time�. The electron distribution function
is entirely defined by the functions v j�t� and by the knowl-
edge of the electrostatic potential ��x , t�. It is reconstructed
in any position and at any time piece by piece as illustrated
in Fig. 2, which shows an example of the discretization of
the electron velocity distribution in the center of the foil �x
=0� at two different times, including the initial time t=0, and
as described more precisely in the next section.

B. Distribution function discretization

Let E j�t�=mev j�t�2 /2 be the total energy of the electron
labeled j. We assume that the electrons whose energy is be-
tween two successive quantities E j�t� and E j+1�t� are de-
scribed by a piece of Maxwellian characterized by a tem-
perature Tj�t�. As a result, the distribution function is written
as a sum of Maxwell-Boltzmann distributions hj in the fol-
lowing way:

fe�x,v,t� = �
j=0

�

hj�x,v,t�� j�v,x� . �24�

The window functions � j are defined by

� j�v,x� = H�v − uj� − H�v − uj+1� , �25�

where H is the Heaviside function and the quantities uj are
given by

uj�x,t� = v j
2�t� +

2e��x,t�
me

�1/2

. �26�

Note that uj corresponds to the velocity of the electron la-
beled j at position x in the plasma. The Maxwell-Boltzmann
distributions are written as

hj�x,v,t� =  jFj�x,v,t� =
 jne0

�2�vth0

exp e�

kBTj
�exp − v2

2vthj
2 � ,

�27�

with

 j = f j exp E j

kBTj
� , �28�

where the f j are the normalized values of the distribution
function at the center of the foil,

f j = fe�x = 0,v j,t�
�2�vth0

ne0
. �29�

The temperatures Tj are defined in order to provide the con-
tinuity of fe�x ,v , t�, with

f j+1 = f j expE j − E j+1

kBTj
� . �30�

Finally vthj = �kBTj /me�1/2 is the thermal velocity associated
with Tj.

The distribution function is discretized on a number of
points sufficient to enable the convergence of the physical
quantities such as density, thermal energy, and acoustic
speed. In most of the simulations shown in this paper, we
used n=30 points, with v0=0 and vn−2=6vth0 at t=0, while
the last velocity is considered to be infinite, vn−1=�, with
fn−1=0, the last temperature conserving its initial value
Tn−2=Te0 at any time �this assumption will be justified later�.

The expression for the distribution function allows us to
compute analytically some quantities needed to integrate nu-
merically the Poisson equation. The electron density is cal-
culated by simply integrating the distribution,

0 1 2 3 4 5 6
10

−3

10
−2

10
−1

10
0

v2 / 2v
th
2

f e(0
,v

,0
)

/f
e0

v
j+1
2 (0)

v
j
2(0)f

j

f
j+1

v
j
2(t)

v
j+1
2 (t)

FIG. 2. �Color online� Discretization of the electron velocity
distribution in the center of the foil, x=0. The initial distribution is
plotted with black points, while the distribution at a time t is plotted
with red points. The f j remain constant during the expansion
whereas the v j evolve with time. The electron distribution is recon-
structed with pieces of Maxwellian between each point.
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ne�x,t� = 2�
j=k

�

 j�
uj

uj+1

Fjdv + k−1�
0

uk

Fk−1dv� , �31�

where uk is defined as the first uj �R. Using the error func-
tion erf, the density reads

ne�x,t� =
ne0

vth0
��

j=k

�

� j exp e�

kBTj
� + �� exp e�

kBTk−1
�� ,

�32�

with

� j =  jvthj�erf uj+1

�2vthj
� − erf uj

�2vthj
�� ,

�� = k−1vthk−1
erf uk

�2vthk−1

� .

Knowing the electron density as a function of �, we can
determine the expression for the electric field at the ion front,
Ef, at any time. Integration of the Poisson equation in the
pure electron cloud from xf to � gives

�0Ef
2

2
= e�

�f

−�

ne���d�

=
ene0

vth0
��

j=k

� �
�f

−Ej

� j exp e�

kBTj
�d��

+ �
�f

−Ek

�� exp e�

kBTk−1
�d� , �33�

where � f is the electric potential at the ion front. The electric
field at the front can be hence written

Ef = � 2ne0

�0vth0
��

j=k

�

 jvthj�K j
j+1 − K j

j� + k−1vthk−1
Kk−1

k ��1/2

,

�34�

where

K j
l = e�

�f

−El

erf ul

�2vthj
�exp e�

kBTj
�d� �35�

=kBTj�� 2

�

ul�� f�
vthj

exp−
El

kBTj
�

− erful�� f�
�2vthj

�exp e� f

kBTj
�� . �36�

Finally, the calculation of the potential �or the field� in the
hot electron cloud, x�xf, is obtained by changing in the
expression �33� the integral boundary � f by �.

At time t=0, one has  j =1, vthj =vth0, and Tj =Te0, which
implies ne�x ,0�=ne0 exp�e� /kBTe0� as wanted. Similarly, the
expression �34� reduces to �20� Ef = �2 /eN�1/2E0, with eN
=2.718 28. . . and E0= �ne0kBTe0 /�0�1/2.

C. Numerical method of integration

The set of equations �10�, �21�, �22�, and �24� is solved
with a global iterative method. More precisely guessed val-
ues of the velocities v j�t� are first obtained by extrapolation
at time t from their values at the previous time steps. The
Poisson equation is then linearized around a guessed value of
the electric potential, which is simply its value at the previ-
ous time step. Solving this linearized Poisson equation gives
a new value of the potential, which is used to compute the
energy loss of the electrons. This in turn leads to corrected
values of the velocities v j�t�. The procedure is then iterated a
few times, and we have verified its rapid convergence in
fewer than ten iterations. Once the electric potential is deter-
mined, the ions are moved according to Eq. �21�.

The time step �t is governed by the ion dynamics and is
chosen as a fraction of the inverse of the ion plasma fre-
quency �pi= �Z2ni0e2 /mi�0�1/2. The results presented in this
paper were obtained with �pi�t=0.2. Typically we follow
about 103 ions. The vacuum, which is explored by most en-
ergetic electrons, is treated with an adaptative mesh depen-
dent on the local Debye length, with up to a few thousand
points.

IV. NUMERICAL RESULTS AND COMPARISONS WITH
PIC SIMULATIONS

We present in this section some results of our hybrid ki-
netic code. In order to check the validity of the model, the
results will be compared with the ones obtained with the
hybrid model described in Ref. �28�, which assumes a time-
dependent Maxwellian distribution, and the ones obtained
with a one-dimensional PIC code.

The PIC code is nonrelativistic and purely electrostatic.
As in the kinetic model, the ions initially occupy a slab of
thickness L, while the electrons are in Maxwell-Boltzmann
equilibrium with the self-consistent electrostatic potential,
with a Debye sheath in vacuum on both sides. The mass ratio
is mi /me=1836, with Z=1, and initially Te0 /Ti0=1000. The
simulation box is about 3�104�D0 long where �D0
= ��0kBTe0 /ne0e2�1/2. There are 4�105 particles in each
mesh, with �x=0.2�D0. The PIC code is running with a time
step of �pe�t=0.05, where �pe is the electron plasma fre-
quency.

A. Velocity distribution

Figure 3 shows the velocity distribution in the center of
the plasma foil, where the electric potential vanishes, at time
�pit=30 and �pit=100 for a plasma slab of initial thickness
40�D0. The distribution in any position x can be deduced
from the distribution in the center of the foil by shifting the
energy by the potential energy −e��x , t�. One can see the
very good agreement between the results of the kinetic
model and of the PIC simulations. The small fluctuations that
we can notice in the PIC distribution for high velocities
come from the very low amount of macroparticules in this
phase space region.

The Maxwellian distribution corresponding to the tem-
perature computed in the hybrid model �28� is plotted in
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blue. While the energy contents of the distribution functions
given by the three models are in fact very close, as we will
see later, one observes a strong departure of the actual dis-
tribution function �given either by the kinetic or the PIC
models� with respect to the Maxwellian distribution, with a
larger number of low-energy electrons, a smaller number of
intermediate-energy electrons, and finally a larger number of
high-energy electrons. The two first behaviors are consistent
with the discussion given in Sec. II C 2, indicating the initial
tendency of the electron distribution function to evolve to-
ward a top-hat distribution. The high-energy part, not pre-
dicted by the discussion of Sec. II C 2, is in fact related to
the non-neutral outer part of the electron cloud expansion in
vacuum.

Figure 4 shows the time evolution of the total energy E j of
the electrons describing the electron distribution function for
L=40�D0 and L=1000�D0. As discussed in Sec. II C 2, low-
energy electrons �E j�t=0��3kBTe0 /2 in the large-L limit�
gain energy during the first phase of the expansion, while
high-energy electrons lose energy. After a time correspond-
ing approximately to L /2cs0, where cs0= �ZkBTe0 /mi�1/2, all
the electrons eventually lose energy. Note that, as will be
discussed later in Sec. IV D, this time is the time at which
the ion rarefaction wave reaches the center of the foil.

By varying L, we have verified that the whole structure of
the characteristics E j�t� tends to a self-similar behavior when
time is scaled to L. The departure from the self-similar char-

acter is due to higher-energy electrons which reach the
vacuum region. Note that the characteristics of these high-
energy electrons seem to be regularly spaced out. It is due to
the fact that they experience an energy loss which does not
depend on their energy, as already observed in Fig. 3, which
shows that the hot tail of the velocity distribution remains
Maxwellian with the initial temperature Te0. The velocity
distribution of high-energy electrons �E� �e� f�� can be writ-
ten in the form

feh�E� � e−E/kBTe0. �37�

Consequently, we can assume that the potential in the pure
hot electron cloud can be written roughly as in the isothermal
model �20�,

��x,t� � � f − 2kBTe0 ln1 +
x − xf

�2eN�1/2�Dhf
� , �38�

where �Dhf = ��0kBTe0 /nefe
2�1/2. One can hence estimate the

energy variation rate for high-energy electrons, for which
most of the energy losses occur in the pure electron cloud.
One obtains

	 dE
dt

 = − e	 ��

�t

 � − ed� f

dt
−

kBTe0

nef

dnef

dt
� , �39�

where we have used the expression for �� /�t corresponding
to x�xf, which is independent of space. Figure 5 shows a
good agreement between the analytical expression �39� and
the numerical results.

B. Phase space evolution

To show the evolution of the distribution function, we
have chosen a plasma slab half-width of L /2=20�D0. The
distribution function in the phase space is shown in Fig. 6 for
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FIG. 3. �Color online� Velocity distribution at �a� �pit=30 for
L /2=20�D0 and �b� �pit=100. Black line, kinetic model; red dash-
dotted line, PIC code; blue straight line, hybrid model of Ref. �28�
�time-dependent Maxwellian distribution�. The dashed line in the
inset represents the initial velocity distribution. The distributions are
normalized to fe�0,0 ,0� and are taken at the center of the plasma
foil, x=0.
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�pit=0,10, and 30. The distribution function is normalized
to its initial value in the center of the target, fe0= fe�0,0 ,0�,
and only one-quarter of the phase space is represented, due
to the symmetry of the expansion. The phase space is repre-
sented by the isocontours of the distribution which are dis-
played in a color scale for the PIC results and with black
lines for the kinetic model. The values of the distribution
function in the center of the target, f j, has been chosen to
correspond to the logarithmic color scale of the PIC datas to
facilitate the comparison. Note that the isocontours may also
be interpreted as the electron trajectories in the phase space,
due to the slow time variation of the potential. Actually, in
order to compare results from both codes, the mean elec-

tronic velocity �first moment of the distribution� has been
subtracted in the PIC results since our discrete distribution
only depends on the energy of the electrons and therefore
does not include the mean velocity. As a result, one can see
in the figures the excellent agreement between the PIC and
the kinetic isocontours. For �pit=10 ��pit=30� the ion front
is located at xf �45�D0 �xf �140�D0�, and manifests itself by
a bump on the isocontours.

C. Thermal energy

One can calculate in our kinetic model the thermal energy
density of the electrons

Dth�x,t� =
me

2
�

−�

�

v2fe�x,v,t�dv . �40�

With the distribution defined in Eq. �24�, one obtains

Dth =
mene0

�2�vth0
��

j=k

�

� j exp e�

kBTj
� + �� exp e�

kBTk−1
�� ,

�41�

with

� j =  jvthj
2 ���

2
vthj�erf uj+1

�2vthj
� − erf uj

�2vthj
��

− �uj+1 exp−
uj+1

2

2vthj
2 � − uj exp−

uj
2

2vthj
2 ��� ,

�� = k−1vthk−1

2 ���

2
vthk−1

erf uk

�2vthk−1

�
− uk exp−

uk
2

2vthk−1

2 �� .

One can define the local temperature T�x , t�
=2Dth�x , t� /ne�x , t�kB. This function is shown in Fig. 7�a� as
a function of space for three different times. The temperature
first decreases, then increases, and asymptotically reaches the
initial temperature Te0 for x→�. This behavior can easily be
deduced from the analysis of the distribution function in the
center of the foil �Fig. 3�.

One can also determine the mean thermal energy per elec-
tron �Eth�=�Dthdx /Ne, where Ne=�fedv dx represents the to-
tal number of electrons �per unit surface�. The mean thermal
energy is shown in Fig. 7�b� and compared with the results of
the PIC code and of the hybrid model of Ref. �28�. We can
notice that the results from the three models coincide almost
exactly. We find again the asymptotic law obtained in the
hybrid model �Eth�� t−2.

D. Ion acoustic speed and disassembly time

The disassembly time can be defined as the time taken by
the rarefaction wave, traveling at the ion acoustic speed, to
reach the center of the foil. Assuming as a first approxima-
tion that the temperature does not change significantly during

0 50 100
−0.1

−0.08

−0.06

−0.04

−0.02

0

ω
pi

t

〈d
E

/d
t〉

FIG. 5. Energy variation rate for high-energy electrons �hot tail
of the velocity distribution�. Black line, numerical result; dashed
line, analytical result from expression �39�.

FIG. 6. �Color online� Isocontours of the electron distribution
function in the phase space at �pit= �a� 0, �b� 10, and �c� 30. PIC
and kinetic results are shown, respectively, with a logarithmic color
scale and with black lines. Note that the scales are different for each
picture �though the surface of the displayed phase space is kept
constant�.
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this phase, the disassembly time is roughly given by td0
�L /2cs0 �28�. Actually, in the hybrid model of Ref. �28�, the
ion acoustic speed is decreasing with time as �Te and the
disassembly time is slightly larger than td0. In contrast, we
show here that, though the mean electron energy is a de-
creasing function of time, the ion acoustic velocity inside the
inner part of the slab is in fact increasing with time during
the first phase of the expansion. This strongly counterintui-
tive result is related to the strong departure of the electron
distribution function with respect to a Maxwellian distribu-
tion of the same mean energy. To prove this assertion, let us
calculate the time evolution of the acoustic speed in the ki-
netic theory.

To determine the ion acoustic speed, we consider an ion
perturbation of characteristic wave number k �strictly speak-
ing, k should verify �D0	k−1	L�. The corresponding dis-
persion relation for the acoustic wave in kinetic theory is
known to be

�2

�pi
2 =

mek
2�0

e2 �
−�

� � fe0

�v
dv
v �−1

. �42�

In the expansion, the electron distribution function is dis-
torted from the initial Maxwell-Boltzmann distribution and
the dispersion relation �42� has to be evaluated with the
�slowly� time-varying distribution function fe0 as in the qua-
silinear theory. The distribution is taken at the center of the
foil, fe0= fe�x=0,v , t�, since the rarefaction wave is traveling
in the inner part of the plasma slab during the first phase of
the expansion.

With the distribution function �24�, the dispersion relation
reduces to

�2

�pi
2 =

k2�D0
2

C�

, �43�

with

C� = �
j=0

�

Cj exp e�

kBTj
� �44�

and

Cj =
 jvth0

vthj
�erf uj+1

�2vthj
� − erf uj

�2vthj
�� .

The expression �43� is in fact valid at any time, not only
during the first phase of the expansion. Thus it is necessary
to take into account the ion density decreasing in the center
of the foil at late times, so that the ion acoustic speed finally
reads

cs = cs0ni�0,t�
C�ni0

�1/2

. �45�

Figure 8�a� shows the time evolution of the ion acoustic
velocity in the center of the slab. Also shown is the quantity
�ZkBT�0, t� /mi�1/2 which represents the ion acoustic speed of
a Maxwellian distribution of the same energy content. As
said before, the ion acoustic velocity is first increasing with
time, while the energy content is decreasing.

The position of the rarefaction front as a function of time
is xrar�t��xrar�0�−�0

t cs�t��dt� �in practice the rarefaction
front has a spatial extension of a few Debye lengths�. The
disassembly time is hence given by the equation

L = 2�cs�td, �46�

where �cs�td=�0
tdcsdt. Numerically we obtain �cs��1.14cs0

and td��7 /8�td0.
To illustrate the effect of the departure from a Maxwell-

ian, let us consider super-Maxwellian distributions of the
form

fe�v� =
n

2��1/n�
ne0

v0
�exp −  v

v0
�n

, �47�

with

vth0 = �� v2fedv

ne0
�

1/2

= v0���3/n�
��1/n�

�
1/2

, �48�

where � is the usual Gamma function. Using �42�, the ion
acoustic speed reads

cs = cs0
��1/n�

�n��3/n���1 − 1/n��1/2 , �49�

where cs0= �Zme /mi�1/2vth0.
Figure 8�b� shows the ion acoustic velocity as a function

of n for a distribution function of the form �47�. Also shown
in Fig. 8�c� is the value n�t� for which the ratio cs /cs0 de-

0 100 200 300
0

0.2

0.4

0.6

0.8

1

x / λ
D0

T
e

/T
e0

(a)

ω
pi

t=10

ω
pi

t=30

ω
pi

t=0

10
−1

10
0

10
1

10
2

10
−1

10
0

ω
pi

t

〈E
th

〉/
〈E

th
0〉

(b)

FIG. 7. �Color online� �a� Temperature as a function of space.
�b� Time evolution of the mean thermal energy. The results of the
kinetic model, PIC simulation, and hybrid model are plotted, re-
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duced from Fig. 8�a� coincides with the ratio effectively ob-
served in Fig. 8�a�. Figure 8�d� shows an example of such a
fit, for �pit=20.

E. Spatial profiles

The spatial profiles of the potential, the electric field, the
ion density, and the electron and ion mean velocities are
plotted in Figs. 9 and 10 for the kinetic, the PIC, and the

hybrid models, at �pit=30. One can verify in Fig. 9�a� that
the electric potential behavior in vacuum in the kinetic and
PIC calculations is correctly given by Eq. �38�. On the other
hand, though the hybrid model predicts the correct value of
the potential at the position of the ion front, its description of
the vacuum appears quite poor, essentially because it does
not take into account the spatial structure of the temperature
as shown in Fig. 7�a�.

One also notes the excellent agreement of the electric
field predicted by the kinetic and the PIC models in Fig. 9�b�.
On the other hand, slight discrepancies appears at late times
with the hybrid model. Although the position of the electric
field peak �at the ion front� is consistently predicted by the
three models, its magnitude and width are larger in the ki-
netic and PIC models than in the hybrid model. This feature
was in fact already present in Fig. 3 of Ref. �34�. As a matter
of fact, the width and the magnitude of the peak of the elec-
tric field are mainly determined by the local temperature at
the ion front xfront via the local Debye length. In the kinetic
and PIC models, the local temperature satisfies 2�Eth� /kB
�T�xfront , t��Te0, while in the hybrid model �28� the ion
front temperature almost coincides with the averaged tem-
perature 2�Eth� /kB.

The ion density profiles, shown in Fig. 10�a� at �pit=30,
are similar in the three models. However we note that the ion
density in the center of the foil is lower in the kinetic and
PIC models than in the hybrid model. Indeed, this is due to
the fact that, as explained in Sec. IV D, the rarefaction wave
is reaching the center of the foil earlier in the kinetic and PIC
models.
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The last remark concerns the mean electron velocity
which cannot be calculated with our distribution. It is never-
theless possible to obtain the electron mean velocity with the
Maxwell-Ampère equation without magnetic field ���B
=0�,

ve =
ni

ne
vi +

�0

ene

�E

�t
. �50�

By introducing the Lagrangian operator d /dt=� /�t+vi� /�x,
where vi is the ion velocity in the plasma �for x�xf� or the
velocity of the numerical mesh in the vacuum �for x�xf�,
and using the Poisson equation �22�, one finds

ve = vi +
�0

ene

dE

dt
. �51�

The electron mean velocity is plotted in Fig. 10�b� and is
compared with the mean velocity obtained in the PIC code.
Also shown is the ion velocity vi for x�xf. One can observe
the good agreement of both codes in the plasma region. In
the vacuum �x�xf�, the PIC code gives noisy results because
of the very small number of particles per cell in this region,
whereas our model provides a smooth plot of the mean elec-
tron velocity.

F. Final velocity

The values of the field in the three models are similar
until the disassembly time, from which the asymptotic evo-
lutions slightly differ, as can be seen in Fig. 11�a�, which

shows the time evolution of the field at the front in the three
models. At late times the hybrid model predicts a fast de-
crease of the electric field at the ion front, Ef
=�2kBTe /e�Df � t−2, while the kinetic model as well as the
PIC code predict Ef � t−m with 1�m�2. This difference in
the scaling laws is again due to the fact that the electron
temperature at the ion front is smaller in the hybrid model
than in the kinetic and PIC models.

A slower decrease of the field leads necessarily to a
slower convergence of the front velocity as a function of
time. This trend can be verified in Fig. 11�b�, which shows
the ion front velocity for the hybrid model �28� and for the
present kinetic model. Note, however, that the two curves go
apart at late times only, after most of the acceleration has
taken place.

V. CONCLUSION

We have studied the one-dimensional expansion of a
plasma slab into a vacuum with a kinetic description of the
electron population. It has been shown that the slow time
evolution of the self-consistent electrostatic potential allows
one to carry out a separation between a slow time scale
linked with the ion motion and a fast time scale correspond-
ing to the electron transit time in the potential well. The
adiabatic behavior of the electrons enables us to calculate
their mean energy variation in the potential and hence to
determine the electron distribution function at any time. We
demonstrate that, due to the expansion, the electron velocity
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FIG. 10. �Color online� �a� Spatial profile of the ion density at
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�blue dashed line� models. �b� Time evolution of the ion velocity at
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distribution function does not remain Maxwellian. As a mat-
ter of fact, we notice that the distribution function in the
center of the plasma slab is composed of two parts. The first
part corresponds to electrons whose behavior is determined
by the quasineutral plasma region with a time-decreasing
mean energy. The second part corresponds to electrons that
reach the outer purely electronic part of the system and main-
tain the initial slope of the distribution function. A special
section has been devoted to the determination, in the central
part of the slab, of the acoustic speed, which is also the
rarefaction wave velocity. We have shown that, at least dur-
ing the initial phase of the expansion, it accelerates due to
the distortion of the distribution function, in contrast with the
predictions of purely fluid models. The disassembly time of
the plasma slab is hence smaller than expected. We have also
observed that the acceleration of the ions during the expan-
sion is more efficient at late times in the kinetic model than
in the hybrid model. All of these observations are in full
agreement with PIC simulations.

All the simulations shown in this paper correspond to an
initial electron distribution function given by a Maxwellian
distribution function. However, the model is not restricted to
a particular form of the initial electron distribution function,
and we have used it, for instance, with an initial distribution
function given by the sum of two Maxwellian distributions
�cold and hot electrons�, similarly to what was done in the

hybrid model of Ref. �28�. The model is able to treat realistic
temperature and density ratios �up to hundreds or more�. The
presentation of the corresponding results is left for a future
presentation.

The kinetic model presented in this paper is nonrelativis-
tic. Its extension to the relativistic case is rather straightfor-
ward, as the adiabatic hypothesis used here still applies.

The kinetic study of plasma expansion presented in this
paper is strictly one dimensional. The potential coupling with
the transverse direction is not taken into account. Coupling
might occur due to any source of angular redistribution of
the electron energy. Collisions or electromagnetic instabili-
ties are potential sources for such a coupling. Collisions
might play an important role if the collision time is compa-
rable to or smaller than the characteristic time L /2cs0. Simi-
larly, electromagnetic instabilities are expected to occur on
characteristic times of the order of a few times the ratio of
the skin depth c /�pe to the thermal velocity vte, which is
implicitly supposed here to be larger than L /2cs0. The study
of the coupling to transverse directions is left for future
work.
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